
Stipple Tunes: An Artistic Form of
Uncompressed Image in Audio Steganography

Alexa Lewis1, Christopher J Tralie1[0000−0003−4206−1963]

Ursinus College, Department of Mathematics And Computer Science, Collegeville,
PA, USA

Abstract. We present an artistic audio steganography technique for
hiding stipple images inside of uncompressed audio that we dub “stip-
ple tunes.” Given an audio carrier and a stipple image to hide, the
goal is to manipulate samples in the left and right audio channels to
draw the stipple points; that is, the left and right channels are inter-
preted, respectively, as X and Y coordinates in the Cartesian plane.
To accomplish this, we devise an objective function that pans the au-
dio and restricts samples to the stipple, while minimizing error, which
we solve using the Viterbi algorithm. Decoding the hidden image is
trivial; we simply create a scatterplot of the audio samples. We pro-
vide code, examples, and an interactive viewer in Javascript at https:

//ctralie.github.io/StippleTunes/Viewer/

1 Introduction

Steganography is the process of hiding one data stream “in plain sight” in an-
other “carrier” data stream. In audio steganography [6][8], audio acts as a carrier.
In any steganography technique, a simple scheme involves hiding data in the least
significant bit of samples [5]. In 16-bit audio, this is inaudible. The downside of
such techniques is that compression will destroy the hidden data, and it is easy
to detect statistically [9]. However, in this work, we treat steganography as more
of an artistic endeavor; we are concerned less with the data being compressed or
statistically or audibly hidden, as long as the audio is still pleasant to listen to.
To that end, we pursue an uncompressed audio steganography technique that
we dub “stipple tunes,” which is specifically designed to hide images in audio.
Our goal is to spread an audio carrier across two channels in such a way that
each pair of audio samples, when thought of as a point, plots an XY scatterplot
that creates the hidden image. Figure 1 and Figure 2 show two examples.

Using the audio channels as coordinates on the Cartesian plane is spiritually
similar to oscilloscope music [1][2][14], though we don’t “connect the dots” as an
oscilloscope would. It is also worth mentioning recent works that trained neural
networks to hide full resolution color images [4][10][13][7] in audio, though we
want our technique to be easier to explain and implement.



2 Alexa Lewis , Christopher J Tralie

2 Stipple Tunes

To hide images in audio, we first turn to an intermediate representation: the stip-
ple pattern, or a collection of dots that resembles the image. We use the technique
of Secord [12] to automatically create stipples. This technique samples randomly
from a density function that is higher in darker regions of the image, and then
it moves the dots towards their Voronoi centers repeatedly (Lloyd’s algorithm)
until they converge to a more uniform, aesthetically pleasing distribution. To
make sure our image picks up on important edges, even if they are brighter, we
also make the density function higher in regions that are closer to edges, which
we detect with a Canny edge detector [3].

Fig. 1. A stipple tune on Layla the cat, using a 30 second clip from Eric Clapton’s
“Layla,” created from a stipple with 100,000 points.

Once we have the stipple pattern and a single channel audio carrier x[j], we
turn the audio stream into a 2D curve by simply repeating the channel twice:
one for each coordinate. From there, a simple idea is to find the nearest neighbor
in the stipple pattern to each 2D audio point (x[j], x[j]). However, this has an
immediate drawback since the curve simply moves back and forth along the line



Title Suppressed Due to Excessive Length 3

Fig. 2. A stipple tune on a picture of Martin Luther King Jr., using a 30 second clip
from his “I Have A Dream” speech.

y = x, so nearest neighbors would concentrate near this line. To encourage the
algorithm to explore points away from this line, we slowly rotate the line and
sweep the entire stipple. This corresponds to panning the audio between two
channels which, while audible, is not unpleasant.

Formally, let Y [j] = x[j] + ix[j] be an embedding of (x[j], x[j]) in the com-
plex plane, and similarly embed the stipple Z in the complex plane. Then, we
introduce a hidden state θ[j] so that we actually find the nearest neighbor from
the points Yθ[j] = Y [j]eiθ[j] to the stipple pattern Z. The effect of θ[j] is to
pan between the left and right audio channels, and snapping Yθ[j] to the nearest
point in the stipple can be thought of an unusual form of quantization.

Crucially, we encourage the line to move and sweep the whole image by
forcing θ[j + 1] > θ[j] + ϵ for some ϵ > 0. We can solve for the hidden states
θ[j] using the Viterbi algorithm. Rather than maximizing a probability, as in
the traditional application of Viterbi to HMMs, we seek to minimize the sum
of nearest neighbor distances1. In this way, our application is similar in spirit
to corpus-based concatenative synthesis [11], where the “corpus” is simply the
stipple pattern. Algorithm 1 provides more details. In practice, we discretize θ
by a factor win coarser than audio sample rate to keep the Viterbi algorithm
tractable. We also discretize the possible rotation angles to na, and we force

1 Of course, a probability can always be converted to a “distance” via a negative log



4 Alexa Lewis , Christopher J Tralie

adjacent angle states to be between 1 and tw < na of each other so that adjacent
angles have to change, but not by an arbitrary amount. We also use a grid (with
resolution equal to that of the image) to perform approximate nearest neighbor
of points in Y to stipple points Z.

Figure 1 shows an example of mapping a stipple of a special cat named Layla
to a 30 second clip from Eric Clapton’s “Layla,” using na = 60, win = fs =
44100, and tw = 10. Since win is the sample rate fs, we only have one state per
second, but we find this is enough to get a good sweep through the stipple.

Algorithm 1 Stipple Tunes Algorithm

1: procedure StippleTune(Z, x, na, win, tw) ▷ Z is stipple, x is audio
samples, na is number of discrete angle states, win is number of samples between
angle states, and tw is amount by which angle can jump each step

2: N ← len(x) ▷ Number of audio samples
3: Y ← x+ ix
4: M ← ceil(N/win)
5: C[i, 0]← 0, C[i, j > 1]←∞ ▷ na×M Cumulative cost matrix
6: I[i, j]← 0 ▷ na×M backpointers to best preceding state
7: for t = 2 : M do
8: for j = 1 : na do
9: θj ← 2πj/na
10: for k = j − tw : j − 1 mod na do
11: θk ← 2πk/na
12: Let θℓ ← θj + (θk − θj)/win
13: d←

∑win
ℓ=1 dZNN (Y [win ∗ t+ ℓ]eiθℓ) ▷ Sum distances to the nearest

neighbors in Z of all rotated Y points
14: if C[k, t− 1] + d < C[j, t] then
15: C[j, t]← C[k, t− 1] + d
16: I[j, t]← k ▷ Remember optimal transition
17: end if
18: end for
19: end for
20: end for
21:
22: Backtrace I to obtain the optimal sequence of angle states
23: Linearly interpolate between each angle state (line 11) to compute θ[k], k =

1 to N
24: Let Xk be the nearest neighbor in Z to Yke

iθ[k]

25: return X
26: end procedure

3 Comparison To LSB Steganography

Let’s suppose our audio is sampled at 44100hz. Then an LSB technique on
2 channel audio would transmit 88200 bits/second. Let’s further suppose our



Title Suppressed Due to Excessive Length 5

stipple has been discretized to a 1024x1024 grid, so that each stipple location
requires 20 bits to transmit. This means that we could transmit 4410 stipple
locations per second with an LSB technique, or 132,300 samples over a 30 second
span. By contrast, with our technique, we could technically get a stipple location
at every sample, for 10x as many locations per second. However, it is unlikely
that Algorithm 1 would choose every stipple point if we used this many. In both
Figure 1 and Figure 2, we used stipples with 100,000 samples over a period of
30 seconds, and most stipple samples were chosen, so this has a similar capacity
to the LSB technique. However, our technique is incredibly easy to decode; we
simply create a scatterplot of the 2 channel audio samples. This is also easier to
explain to a non technical audience than LSB encoding.

References

1. Rendering shapes through audio signals. https://felixonline.co.uk/issue/

1773/science/rendering-shapes-through-audio-signals, accessed: 2022-07-19
2. Ball, J.H.: Osci-render. https://github.com/jameshball/osci-render (2022),

accessed: 2022-07-19
3. Canny, J.: A computational approach to edge detection. IEEE Transactions on

pattern analysis and machine intelligence (6), 679–698 (1986)
4. Cui, W., Liu, S., Jiang, F., Liu, Y., Zhao, D.: Multi-stage residual hiding for image-

into-audio steganography
5. Cvejic, N., Seppanen, T.: A wavelet domain LSB insertion algorithm for high ca-

pacity audio steganography. In: Proceedings of 2002 IEEE 10th Digital Signal
Processing Workshop, 2002 and the 2nd Signal Processing Education Workshop.
pp. 53–55. IEEE

6. Djebbar, F., Ayad, B., Meraim, K.A., Hamam, H.: Comparative study of digital
audio steganography techniques 2012(1), 25

7. Domènech Abelló, T.: Hiding images in their spoken narratives. Master’s thesis,
Universitat Politècnica de Catalunya (2022)

8. Dutta, H., Das, R.K., Nandi, S., Prasanna, S.R.M.: An overview of digital audio
steganography 37(6), 632–650

9. Fridrich, J., Goljan, M., Du, R.: Reliable detection of lsb steganography in color
and grayscale images. In: Proceedings of the 2001 workshop on Multimedia and
security: new challenges. pp. 27–30 (2001)

10. Geleta, M., Punti, C., McGuinness, K., Pons, J., Canton, C., Giro-i Nieto, X.:
PixInWav: Residual steganography for hiding pixels in audio

11. Schwarz, D.: Corpus-based concatenative synthesis. IEEE signal processing maga-
zine 24(2), 92–104 (2007)

12. Secord, A.: Weighted voronoi stippling. In: Proceedings of the 2nd international
symposium on Non-photorealistic animation and rendering. pp. 37–43 (2002)

13. Takahashi, N., Singh, M.K., Mitsufuji, Y.: Source mixing and separation robust
audio steganography

14. Teschler, L.: Making pictures from sound on an os-
cilloscope. https://www.testandmeasurementtips.com/

making-pictures-from-sound-on-an-oscilloscope-faq/, accessed: 2022-12-01


